Induced packing of odd cycles in planar graphs

نویسندگان

  • Petr A. Golovach
  • Marcin Kaminski
  • Daniël Paulusma
  • Dimitrios M. Thilikos
چکیده

An induced packing of odd cycles in a graph is a packing such that there is no edge in the graph between any two odd cycles in the packing. We prove that the problem is solvable in time O(n ) when the input graph is planar. We also show that deciding if a graph has an induced packing of two odd cycles is NP-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Skolem Odd Difference Mean Graphs

In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...

متن کامل

Approximate Min-max Relations for Odd Cycles in Planar Graphs

We study the ratio between the minimum size of an odd cycle vertex transversal and the maximum size of a collection of vertex-disjoint odd cycles in a planar graph. We show that this ratio is at most 10. For the corresponding edge version of this problem, Král and Voss recently proved that this ratio is at most 2; we also give a short proof of their result.

متن کامل

On Planar Quasi-Parity Graphs

A graph G is strict quasi parity (SQP) if every induced subgraph of G that is not a clique contains a pair of vertices with no odd chordless path between them (an even pair). Hougardy conjectured that the minimal forbidden subgraphs for the class of SQP graphs are the odd chordless cycles, the complements of odd or even chordless cycles, and some line-graphs of bipartite graphs. Here we prove t...

متن کامل

Eliminating Odd Cycles by Removing a Matching

We study the problem of determining whether a given graph G = (V,E) admits a matching M whose removal destroys all odd cycles of G (or equivalently whether G−M is bipartite). This problem is also equivalent to determine whether G admits a (1,1)-coloring, which is a 2-coloring of V (G) in which each color class induces a graph of maximum degree at most 1. We show that such a decision problem is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 420  شماره 

صفحات  -

تاریخ انتشار 2012